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Two new methods for attaining convergence in self-consistent field calculations are 
described. They have been applied to semiconductor inversion layers at fmite temperature. 

1. INTRODUCTION 

In this paper we describe methods for calculating self-consistent fields in semi- 
conductor surface inversion layers, with particular emphasis on the iteration 
methods used. An inversion layer is a thin (~100 angstroms thick) layer just 
inside the surface of a semiconductor, characterized by a conductivity type different 
from that of the bulk of the sample. For example, the current may be carried by 
electrons in the inversion layer and by holes in the bulk material. The inversion 
layer is bounded at the semiconductor surface by a steep potential barrier and 
within the semiconductor by a strong electric field. The potential well formed 
in this way has discrete energy levels, each of which is the bottom of a continuum 
of levels associated with the motion parallel to the surface. The continua are 
called electric subbands. The existence of quantization in the inversion layer has 
been well established experimentally [I]. A number of theoretical consequences 
have been investigated 121, particularly for the electric quantum limit, the case in 
which only the lowest electric subband is occupied by electrons. 

The inversion-layer self-consistent field problem is formally similar to the 
atomic Hartree self-consistent field problem [3], except that the populations of the 
subbands depend on temperature and on the position of the Fermi level. Some 
results on inversion layers at finite temperature have been obtained by Howard [4], 
who allowed for three occupied subbands. UJe have extended the calculation to 
allow for an arbitrary number of subbands and have introduced two new methods 
for attaining convergence to a self-consistent solution. 
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The calculation is carried out in the effective mass approximati0n.l The param- 
eters which enter the equations are the effective mass m3 for motion perpendicular 
to the surface, the density-of-states mass md per constant-energy ellipse in k-space 
for motion parallel to the surface, and the degeneracy factor 12, which gives the 
number of equivalent valleys. These parameters depend on the orientation of the 
surface with respect to the crystallographic axes, and on the energy band structure 
of the semiconductor, as described by Stern and Howard [2]. The reader is referred 
to Sections 1 and 2 of that paper for the physical background of the problem. 

Results of the self-consistent field calculation have been obtained for a number 
of semiconductors, but in most detail for silicon, on which most experimental 
work has been done. Results for n-type inversion layers on P-type silicon, including 
energy level spacings and populations and the spatial extent of the carrier wave 
functions, have been obtained for the principal surface orientations and for a 
range of temperatures, bulk acceptor concentrations, and inversion layer electron 
populations. These results will be presented in a separate paper. This paper is 
concerned with the calculation itself. 

2. SELF-CONSISTENT FIELD EQUATIONS 

We want to find self-consistent solutions of the effective-mass-approximation 
SchrSdinger equation 

with the boundary conditions 

P,(O) = 0, Pi(u-3) = 0, (2) 

for the envelope function, where i identifies the subband and mai is the effective 
mass for motion in the z direction [2]; and of Poisson’s equation (in mks units) 

W-3 = -(eW [N,(z) + C N,p,Z(z)] i 
with the boundary conditions 

V(0) = 0, Y’(c0) = 0, (4) 

1 Corrections to effective-mass-approximation energy levels have been estimated by W. E. 
Howard (to be published). 
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where Pi , which is real, is normalized so that 

i 
O3 P,“(z) dz = 1, 
0 (5) 

and E = K&, where K,, is the dielectric constant of the semiconductor. The 
quantity in brackets in (3) gives the number of electronic charges per cubic 
centimeter. The fixed depletion layer charge density contributed by ionized 
impurities is 

Ndz) = NA - ND, o<z<w, (6) 

where NA and No are the acceptor and donor concentrations in the bulk, and w is 
the depletion layer thickness. The semiconductor surface is the plane z = 0, 
and the z axis points into the semiconductor. We assume that N1(z) vanishes 
outside the z interval indicated in (6).2 The summation in (3) gives the contribution 
to the charge density made by the electrons in the surface subbands that are the 
solutions to (1). The number of electrons per unit area in the i-th subband is [2] 

Ni = Ui ln{l + exp([E, - EJKT)}, (7) 

ai = nuimdiKT/&i2, (8) 

where mdi is the density-of-states effective mass per constant energy ellipse in 
the k, , k, plane, nvl is the degeneracy factor for the ellipses, K is Boltzmann’s 
constant, T is the absolute temperature, and Ep is the Fermi energy. For inversion 
layers on silicon surfaces of general orientation, there are three sets of values of 
the parameters mai, mdi , and nwi ; each set will have its own ladder of subbands. 
For the high-symmetry surfaces we consider, there are only one or two sets of 
values. 

The self-consistent field problem being considered here is that of a semiconductor 
surface, but the equations which enter are very much like those which enter in 
atomic self-consistent fields. In those cases the nuclear charge plays the role taken 
in our case by the fixed depletion charge. The atomic case is simpler than ours 
in having a fixed Ni for each level i, while in our case the Ni generally vary from 
iteration to iteration until self-consistency is reached. 

3. ITERATION METHODS 

In the standard self-consistent field procedure, one usually starts with an 
approximate solution, which may be obtained by an analytical approximation 

* We ignore here variations on the scale of the bulk screening length which occur where the 
depletion layer meets the semiconductor bulk. 
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or in some other way, and either directly or through use of (3) and (4) obtains 
an input potential Vr,(z). The Schrijdinger equation (1) is then solved with this 
potential, and the resulting eigenfunctions and eigenvalues are used to obtain an 
output potential V&z) via (3). If Vrn and V out agree within acceptable limits, 
a self-consistent solution has been found. If not, another round of the iteration 
procedure must be undertaken, and the principal decision that has to be made 
is the choice of a new input potential for the next round. 

The simplest type of iteration is 

Vk+qz) = vg (z) +J$p W’“‘(z), Pa) 

t4yz) = Vk$(z) - vk’ (z), CW 

where the superscript labels the round. The factor f, here independent of z, 
normally lies in the range 0 to 1. A small value gives smooth but slow convergence, 
while a value close to 1 gives rapid convergence in some cases, but leads to diverging 
results in others. Experience with a particular problem often is a good guide which 
allows a choice off that avoids both divergence and excessively slow convergence. 
We call this iteration procedure the lixed-convergence-factor method. 

We use as a measure of convergence the value of W(“)(z) with the largest 
magnitude, and call it w, . Note that w, may be either positive or negative. When a 
fixed convergence factorf is used, the values w, often follow a geometric progression 
with increasing 12. We find that convergence of subsequent rounds is generally 
improved by using 

j(n+1) = f’“‘/(l - r), (10) 

where r = w,/w,,-I , and where we have assumed that f(+l) = ftn). Thus if the 
convergence is slow, and r is close to 1, the new value off will be substantially 
larger than the previous value. If the convergence is rapid, r will be close to 0, 
and f remains relatively unchanged. When the solution is diverging, the procedure 
of (10) can lead to extreme values for the new f. We have chosen to restrict f to 
the range between 0.1 and 0.8. We call this extension of the use of (9) the extra- 
polated-convergence-factor method. An example of the use of this method will 
be given below. 

The procedure just described gives satisfactory convergence in most cases, 
and provides faster convergence than a procedure with a fixed value off if the 
initial value off was not well-chosen. Other methods of varying f can also be used, 
such as starting with an initial value of the convergence factor, and then increasing 
the value toward 1 according to a predetermined schedule [S]. This may lead to 
difficulty unless the initial value off, and the schedule for changing it, are wisely 
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chosen. One would like to have a method which does not need to rely on intuition 
and experience. The extrapolated-convergence-factor method described in the 
previous paragraph is one attempt in that direction, although it is still quite 
empirical. 

There have been other convergence procedures described in the literature [6-81, 
among them the method of Pratt [9], recently used by Rudge [lo], which uses a 
different value off for each value of z, and changes the value off from round to 
round by a linear extrapolation based in the results of the two prior rounds. 

The method which we have found most satisfactory for self-consistent calcula- 
tions for inversion layers is the method we shall call the perturbation-iteration 
method. We deduce the change in output potential to be expected from a change 
in the input potential, and then find that change which makes the resulting new 
input potential equal the predicted output potential. The method is based on 
first-order perturbation theory, and is therefore expected to converge if the starting 
point is not too far from self-consistency. In our work the perturbation-iteration 
scheme is generally applied after a few rounds of the simple fixed-convergence- 
factor method and the extrapolated-convergence-factor method have been used. 

To apply the perturbation-iteration scheme, we choose a set of values z at which 
the input and output potentials are to be evaluated. This grid will normally be a 
subset of the full grid used in solving Eqs. (1) and (3). If we now assume that a 
change dVi, in the input potential is given at each of the major (coarse) grid 
points, and varies linearly between them, we can use perturbation theory, as 
described below, to deduce the resulting change in the output potential. We obtain 
a matrix A such that 

For self-consistency we require that 

Vin + A Vin = Vent + A I/out - w 

After the n-th round of the calculation, the A VI:) required to obtain self-consistency 
in this approximation is 

v/:+l)(zJ - V{i’(zJ = c BJV%(Zj) - Vk)(z,)], (13) 
j 

where the matrix B is the inverse of the matrix (1-A) and 1 here stands for a unit 
matrix. Values of A V:,“’ at points between the major grid points zi are found by 
interpolation. 
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4. CALCULATION OF THE PERTURBATION ITERATION MATRIX 

To find the change in output potential that results from a change dVi, in 
input potential which is specified only at the points zi , we first write 

A Vi*(Z) = c d Vin(ZJ 4(z), (14) 
z 

where the triangular functions ti are defined by 

&(z) = 0, z < Z&l, 

&(z) = (z - Z&l)/(Z( - Z&l), Z&l < Z < Zi y 

td.4 = (Zi+1 - Z>/(Zi+1 - d, 
(15) 

zi < z < zi+1 , 
&(z) = 0, zg, < z. 

The zi are in increasing order as i goes from 1 to N. The range of values of z in 
which we solve Eqs. (1) and (3) is the range from 0 to co, but the numerical integra- 
tions only go to a finite value zN ; approximate analytical expressions are used 
for larger values of z. The first major grid point is taken at z1 > 0, and the value z,, 
which enters in the definition of tl(z) is taken to be 0. The value z~+~ which enters 
in the definition of the last triangular function, try, is taken to be infinite. 

With these definitions of the ti , the perturbing potential d V&z) vanishes 
at z = 0, has the values A Vin(zJ at the major grid points zi , varies linearily 
between successive points, and is constant for z 3 z, . There are, of course, 
many other possible ways of choosing dV,,(z) between the tied values at the 
grid points. The method of linear interpolation we have chosen is the simplest, 
and also allows the necessary calculations to be carried out quite efficiently. 

To calculate the change in output potential which results from the change (14) 
in the input potential, we use perturbation theory to calculate the changes in the 
quantities which appear on the right in (3). The energy change of the j-th level 
produced in first order by the potential energy change (14) is 

and the corresponding change in the number of carriers in the j-th subband is 
found from (7) to be 

dN, = (& - dEj) Dj , (17) 

Q = WKT)U + exp([& - &lW’>Y, (18) 
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where aj is defined in (8). In our calculation the total number of carriers in the 
inversion layer is held fixed, so that 

A.&= Cd,AE#, 
i 

(19) 

where di = D& Dj . 
The change in the j-th wave function produced by (14) is 

AP* = c’ P<(Z) jrn P,(Z) P,(Z) A V,,(Z) dz/(Ej - Es). 
i 0 

(20) 

The double prime on the summation excludes i = j, and also excludes all i 
belonging to a different set of constant-energy ellipses [2]. Matrix elements linking 
states at different points in the Brillouin zone are expected to be much smaller 
than those which we retain in (20), because the matrix element between the 
corresponding Bloch states is much smaller than that for states at the same point 
in the zone. 

The only other quantity which enters in Eq. (3) for the output potential is the 
thickness w of the depletion layer. That thickness will change when the input 
potential changes, but the change is small in most cases. It has been taken into 
account in our calculations, but is omitted from the presentation here to prevent 
a mass of detail from obscuring the simplicity of the perturbation-iteration method. 

We can now write the matrix elements which enter in (11) in the form 

where 

tz,ij = I = Pdz) f’,(z) W dz (22) 
0 

and Kj is the solution of the Poisson equation 

<F(z) = -(2/E) Pi(Z) P,(z) (23) 

with the boundary conditions (4). With the matrix A given in (21) we proceed 
as in (13) to find the approximate change in input potential which is expected 
to lead to a self-consistent solution. 

When many subbands are used, the number of times Eq. (23) must be solved is 
substantially larger than the number of sub-bands. The amount of calculation 
can be reduced if we approximate (Nd - Nj)/(Ei - Ej) for a fixed i by a constant W, 
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and use the closure approximation [l I] and the Green’s function for Poisson’s 
equation (23). Then the last term in (21) is replaced by 

where Y#& is the solution of the differential equation 

IlyErii(z) = -(e”/e) P,.“(z) tl(z) 

with the boundary conditions (4). 

(25) 

The foregoing procedure gives the new input potential at the major grid points z, . 
We have generally used 20 to 30 major grid points, as opposed to 300 to 1000 points 
in the numerical integration of the Schrodinger and Poisson equations. An example 
of a calculation with several values for the number of major grid points is given 
below. 

The locations of the major grid points are chosen so that the straight lines 
joining them deviate as little as possible from the actual V(z). An approximate 
choice of the spacing which accomplishes this is found if we note that the maximum 
deviation between a parabolic arc segment and its chord is given by one-eighth 
of the product of the change in slope from one end of the segment to the other times 
the change in the independent variable z from one end to the other. Thus the 
location of the i-th major grid point is chosen near the value of z for which the 
field V’(z) satisfies 

mLl) - Vz)l[z - zi-,] = (IV - i)-” [V(z) - V(zN)][zN - z], (26) 

where the Zi have the same significance as in (15). The algorithm (26) places the 
major grid points closer together for small values of z, where the inversion layer 
charge density is concentrated, and spaces them more widely at the larger values 
of z, where most of the charge density is that of the depletion layer ions and 
where the potential is varying more slowly. An example is given below in Table II. 

The criterion we use for convergence of the self-consistent field iterations is 
that the absolute value of the maximum difference between input and output 
potential energies be less than the largest of: KZ72000, E,/lOOOO, and 0.001 meV. 
This corresponds to relative errors of the order of 1O-s. In practice, we find that 
the potential converges quite rapidly at the major grid points when the perturbation- 
iteration scheme is used after a few rounds of the fixed-convergence-factor and the 
extrapolated-convergence-factor schemes. But between the major grid points 
the differences can be quite large. This difficulty arises because (13) does not tell us 
how to interpolate for the values of the new input potential between the major 
grid points. In our calculation we interpolated linearly for d F’i,/Vr, , rather than 
for d Vi, , to try to preserve the correct curvature in the potential. Because of the 
crudeness of this scheme, the differences between Pout and Vrn did not converge 



64 STERN 

as well between the major grid points as at these points. To remove this difficulty, 
we used rounds of the fixed-convergence-factor method (9) withy = 1 to separate 
rounds of the perturbation-iteration method after the potential at the major grid 
points was nearly self-consistent. The combination gave good results. 

5. COMPARISON OF DIFFERENT ITERATION METHODS 

In Fig. 1 we show convergence of a number of different iteration schemes for 
a particular case, namely an n-type inversion layer with 3 x 1012 electrons/cm2 
on a (100) surface of p-type silicon with 1015 acceptors per cm3, for a temperature 
of 77°K. The starting potential is obtained by using a variational approximate 
solution [2], assuming that all the carriers are in the lowest subband. Four of the 

,I I I1 II I I I, I I I I I I 
‘o-7, 3 5 7 9 II 13 15 17 19 

ROUND 

FIG. 1. Comparison of the rate of convergence of different iteration methods for calculating 
the self-consistent field at 77 “K for an inversion layer on a (001) surface with 3 x 10le electrons/ 
cm2 on p-type silicon with lo*& net acceptors/cm5. Nine subbands were explicitly included in&the 
calculation. The input potential for round 1 was obtained from a variational approximation, 
assuming all the carriers to be in the lowest subband, and led to an extremal value of Vent - VI, = 
0.053 eV where Vi,, was 0.189 eV. The circled signs in the figure indicate the sign of v,,t - Vi,. 
Solid lines connecting the rounds show that the fixed convergence factor of Eq. (9) was used, 
with the indicated value of J Dashed lines show that the extrapolated convergence factor of 
Eq. (10) was used. The dotted lines indicate use of the perturbation-iteration method. The con- 
vergence criterion for this set of calculations was that the greatest absolute value of Vout - V,, 
be less than KT/2000 = 3.3 x lo+ eV, indicated by the horizontal line in the figure. 
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cases in Fig. 1 use the fixed-convergence-factor scheme to round 10, and the 
extrapolated-convergence-factor scheme thereafter. We see that the errors, i.e., the 
maximum values of VoUt - I/in , tend to fall off with the number of rounds in a 
geometric progression. A small value off, like 0.2 in Fig. 1, leads to slow but 
steady convergence, while a large value leads to values which are oscillating in 
sign and increasing slowly in magnitude forf = 0.8, and which diverge even more 
rapidly for case 5 with f = 1. A value near f = 0.4 gives the best results. At the 
tenth round we switch to the extrapolated-convergence-factor method, and find 
that the first four cases then eventually converge. In the sixth case, the fixed- 
convergence-factor method is used to round three, and the extrapolated-conver- 
gence-factor method thereafter. This is seen to be an improvement over the fixed- 
convergence-factor method. Finally, we introduce the perturbation-iteration 
scheme after using the fixed-convergence-factor scheme to round three, and the 
extrapolated-convergence-factor scheme for one round. This gives quite good 
convergence, 

The convergence in the perturbation-iteration scheme improves as the number 
of major grid points increases, but use of 20 to 30 major grid points appears to 
give satisfactory results. Use of the closure approximation (24) degrades the 
convergence somewhat, but satisfactory convergence is obtained even with its use. 

TABLE I 

Elements of the Matrix B which Relates A Vi, to V,,t - V’,, , as Used in Eq. (13), for Round 4 
of a Case with 10 Major Grid Points; Other Parameters as in the Cases of Fig. 1. 

1 2 3 4 5 6 7 8 9 10 

8 
9 

10 

1.053 -308 -.035 - .023 -.007 - .002 -000 0.000 0.000 0.000 
0.178 0.988 -.107 - .080 - .032 -.Oll - .002 -.OOO -BOO -.OOO 
0.317 0.010 0.834 -.152 - .077 -.032 --.OlO -.002 -BOO -BOO 
0.424 0.067 -.171 0.792 -.141 -.073 - .028 -.008 --.OOl --.OOO 
0.481 0.127 -.128 --.214 0.804 -.132 - .063 -.020 -.003 -.OOO 
0.506 0.166 -.083 -.184 -.208 0.816 -.I13 -.044 -.008 -.OOO 
0.513 0.185 -.055 -.154 --.191 -.200 0.844 -.078 -.016 -.OOO 
0.515 0.192 - .042 -.137 --.174 -.191 -.169 0.886 - .029 -.ooo 
0.516 0.194 -.039 -.131 -.166 -.183 -.165 -.128 0.961 --.OOl 
0.516 0.195 -.037 --.128 -.163 --.180 --.I62 --.126 -.039 0.999 

Table I gives the matrix elements of B, the inverse of (l-A), which relates the 
new A Vin t0 Vo,t - VI, . To keep the table small, we used a case with 10 major 
grid points, although larger matrices were used in most of our calculations. It is 
clear from Table I that the new input potential at a given point depends in an 
important way on the input and output potentials over the entire range of z, 

58I/6/1-5 
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not only on the values near the given point. This has also been noted by Roothan 
and Bagus for the expansion method [8]. Values of Vi, , Vout , Vout - Vi, and d Vin 
for the fourth round of the calculation that led to the matrix of Table I are shown 
in Table II, as is the value 6Vi, that would have a given self-consistent potential 
if added to Vin [4]. 

TABLE II 

Examples of the Potentials for Round 4 of the Case for which the Matrix B is Given in Table I. 
All the Potential Energies are in meV. The last Column Gives the Amount that Must be Added 

to Vi, to Give the Self-Consistent Potential Energy 

1 15. 65.247 65.433 0.186 0.191 0.186 
2 24. 88.563 88.690 0.127 0.141 0.136 
3 34. 102.994 103.001 0.006 0.028 0.025 
4 47. 113.593 113.679 0.086 0.108 0.100 
5 64. 122.169 122.415 0.247 0.265 0.252 
6 86. 129.613 129.811 0.198 0.222 0.210 
7 115. 136.812 136.798 -0.015 0.027 0.021 
8 157. 145.398 145.194 -0.204 -0.142 -0.144 
9 239. 160.583 160.299 -0.284 -0.212 -0.210 

10 450. 198.222 197.969 -0.254 -0.180 -0.177 

The advantage of the perturbation-iteration scheme over the other schemes 
we have tried is that it converges in fewer iterations and requires less prior 
experience. The price that must be paid for this is the additional programming 
required to calculate the matrices A and B, and the additional computing time 
needed for their numerical evaluation. For 20 major grid points, one iteration 
round using the perturbation-iteration scheme to calculate the matrices takes 
about three times as long as one round using the fixed-convergence-factor scheme. 
We found that the matrix B does not change much from round to round, and that 
there is no need to calculate it each time. It can be stored, and the only additional 
operations for the iterations are the multiplications in (13), plus the linear inter- 
polation for d Vi,/Vi, between the major grid points. The perturbation-iteration 
scheme then takes only about 10 ‘A longer per round than the fixed-convergence- 
factor scheme. 

The faster convergence obtained with the perturbation-iteration scheme often 
more than compensates for the increased computing time per round. Further 
justification for the use of the method is the reduced reliance on trial and error 
(or intuition and experience) required when it is used. 

A method somewhat similar to ours has been developed by Lang 1121, who 
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calls his method the response function method. He expands AVi, in a series of 
orthogonal functions, and calculates the corresponding d VOUt by carrying out 
as many rounds of the self-consistent field scheme as there are terms in the series. 
The coefficients are then chosen to make the potential as self-consistent as possible. 
His method requires less programming, but may require more machine time. 
Since the methods have not been applied to the same problem, no direct comparison 
of their speed of convergence is possible at present. 

The perturbation-iteration scheme has been applied here to a problem which is 
the analog of the atomic Hartree self-consistent field calculation. But it is also 
applicable, with appropriate extensions, to the Hartree-Fock and Hartree-Fock- 
Slater forms of the atomic self-consistent field equations, and probably to calcula- 
tions on molecules and crystals also. With proper reformulation, the same scheme 
can also be applied to the expansion method [8] of dealing with the self-consistent 
field problem. 
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